報告題目:Learning to maximize a convex quadratic function with application to intelligent reflection surface for wireless communication
報 告 人:羅智泉 加拿大皇家科學院院士,香港中文大學(深圳)副校長、教授
主 持 人:葛 飛 湘潭大學副校長、教授
報告時間:2021年9月18日下午15:00-16:00
報告地點:數學院南樓308
報告摘要:
In this talk we consider learning and optimizing a rank-2 convex quadratic function over K discrete variables. This problem arises from optimal design of a passive beamformer for intelligent reflecting surface (IRS) in order to maximize the overall channel strength. When the quadratic function (or channel state information) is known, we propose a linear time algorithm that is capable of reaching a near-optimal solution with an approximation ratio of (1+cos(π/K))/2, i.e., its performance is at least 75% of the global optimum for K ≥ 3. Furthermore we develop methods to learn and optimize the beamforming strategy when the quadratic function is unknown (i.e. in the absence of channel state information).
報告人簡介:
羅智泉,加拿大皇家科學院院士,香港中文大學(深圳)副校長、教授,深圳市大數據研究院院長,IEEE/SIAM Fellow。長期從事優化理論、算法設計及無線通信研究,相關論文被IEEE等權威學術機構7次評為年度最佳論文,榮獲美國Farkas獎、Paul Y.Tseng連續優化紀念獎。2020年被聘為華為eLab實驗室主任,主持研發的5G網絡優化技術已落地華為GTS平臺。
湖南國家應用數學中心
湘潭大學教務處