新葡京娱乐场网站-澳门葡京娱乐

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

百家乐扎金花现金| 百家乐平台开发| 百家乐庄河闲的赌法| 迪威百家乐娱乐平台| 庞博百家乐的玩法技巧和规则 | 大发888代理佣金| 在线百家乐官网3d| 娱乐城百家乐官网的玩法技巧和规则| 玩百家乐的玩法技巧和规则| 玩百家乐官网游戏经验| 环球百家乐官网娱乐城| 大发888官方网站登录| 明升备用网站| 百家乐官网视频赌博| 地理风水24山72局杨公水法| 百家乐官网赌博大揭密| 百家乐庄闲筹码| 网上真钱游戏| 网络百家乐官网投注| 太阳百家乐官网路单生| 大发888官方我的爱好| 巴厘岛百家乐官网的玩法技巧和规则 | 娱乐城开户送体验金| 汕头市| 赤壁百家乐官网娱乐城| 新全讯网768866| 千亿娱百家乐官网的玩法技巧和规则 | 真人百家乐攻略| 大发888 赌博网站大全| 网上百家乐官网哪里开户| 高科技百家乐牌具| 大发888 大发国际| 百家乐黑牌靴| 有百家乐官网的棋牌游戏| 有百家乐的游戏平台| 百家乐官网稳一点的押法| 百家乐博娱乐网赌百家乐| E世博百家乐官网娱乐城| 星空棋牌舟山清墩| 广东百家乐官网网| 新宁县|