新葡京娱乐场网站-澳门葡京娱乐

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

彝良县| 百盛百家乐软件| 威尼斯人娱乐网反| 博九最新网址| 百家乐官网玩法教程| 注册百家乐送彩金 | 八大胜百家乐官网的玩法技巧和规则 | 百家乐代理荐| 伊春市| 代理百家乐最多占成| 铂金娱乐| 永利高百家乐网址| 大发888网站| 百家乐官网开庄几率| 百家乐官网桌布小| 新锦江百家乐娱乐平台| 百家乐详情| 真人百家乐官网澳门娱乐城| 免费百家乐倍投| 百家乐官网9点| 百家乐技巧| 金榜百家乐娱乐城| 励骏会百家乐官网的玩法技巧和规则| 大发888安装需要多久| 好运来百家乐官网的玩法技巧和规则 | 二八杠游戏下载| 皇冠网百家乐官网啊| 真钱赌博网站| 大发888游戏破解软件| 来博百家乐现金网| 澳门百家乐官网娱乐开户| 大发888站群| 百家乐双层筹码盘| 澳门百家乐官网技巧经| 打百家乐官网庄闲的技巧| 六合彩历史开奖记录| 百家乐稳赢投注| 御匾会百家乐官网的玩法技巧和规则| 辉县市| 大发888下载删除| 百威百家乐官网的玩法技巧和规则 |