新葡京娱乐场网站-澳门葡京娱乐

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

澳门百家乐会出老千吗| 名人百家乐的玩法技巧和规则| 百家乐官网赌机破解| 金沙百家乐的玩法技巧和规则| 百家乐官网玩法注意事项| 大发888游戏平台hg dafa888 gw| 土豪百家乐官网的玩法技巧和规则 | 澳门百家乐官网牌例| 百家乐套路| 利都百家乐官网国际娱乐平台| 微信百家乐群规则大全| 伟德百家乐官网下载| 澳门百家乐论坛及玩法| 哪个百家乐官网网站最大| 大发888手机版官网| 百家乐娱乐全讯网| 足球百家乐官网投注计算| 大发888游戏破解软件| 百家乐玩法教学视频| 百家乐官网桌保险| 网络博彩群| 巴特百家乐的玩法技巧和规则| 网上百家乐官网游戏玩法| 百家乐官网怎么打啊| 缅甸百家乐赌博现场下载| 百家乐官网最新套路| 豫游棋牌游戏中心| 网上百家乐骗人不| 百家乐官网技巧-澳门百家乐官网官方网址 | 电投百家乐网站| 百家乐官网策略网络游戏信誉怎么样 | 澳门档百家乐的玩法技巧和规则 | 本溪棋牌娱乐网| 百家乐赢钱面面观| 希尔顿百家乐官网娱乐城| 百家乐官网赌博规律| 百家乐官网园胎教网| 优博注册| 凯旋门娱乐城开户网址| 大发888扑克官方下载| 去澳门百家乐的玩法技巧和规则 |