新葡京娱乐场网站-澳门葡京娱乐

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

游戏厅百家乐技巧| 真人百家乐怎么对冲| 嘉荫县| 沂南县| 百家乐官网平台哪个比较安全| 在线百家乐大家赢| 大发888下载 客户端| 凤凰百家乐娱乐城| 大发888登陆网页| 迪威百家乐官网娱乐平台| 百家乐保单机解码| 百家乐官网金海岸娱乐| 济州岛百家乐的玩法技巧和规则| 东乌珠穆沁旗| 破战百家乐官网的玩法技巧和规则 | 大发888官网网址| 優博百家乐官网客服| 百家乐现金网最好的系统哪里有可靠吗| 百家乐官网太阳城菲律宾| 恒丰百家乐的玩法技巧和规则| 澳门百家乐官网走势图怎么看| 大发888代理充值| 百家乐官网事一箩筐的微博| 吉木乃县| 百家乐试玩1000元| 百家乐平台那家好| 百家乐官网打印机分析| 太阳城百家乐主页| 百家乐官网游戏机的玩法| 大发888平台| 贵宾百家乐官网的玩法技巧和规则| 大发888娱乐城客服电话| 百家乐太阳城球讯网| 金尊国际娱乐城| 百家乐英皇娱乐平台| 七胜百家乐官网娱乐场| 一路发娱乐| 威尼斯人娱乐城是真的吗| 澳门百家乐官网如何算| 百家乐官网规则| 卡宾娱乐|