題 目:代數(shù)多層網(wǎng)格法與深度神經(jīng)網(wǎng)絡(luò)
主講人:許進(jìn)超 教授 美國(guó)賓州大學(xué)
摘要:In this talk, I will present a general framework for the design and analysis of Algebraic or Abstract Multi-Grid (AMG) methods. Given a smoother, such as Gauss-Seidel or Jacobi, we provide a general approach to the construction of a quasi-optimal coarse space and we prove that under appropriate assumptions the resulting two-level AMG method for the underlying linear system converges uniformly with respect to the size of the problem, the coefficient variation, and the anisotropy. Our theory applies to most existing multigrid methods, including the standard geometric multigrid method, the classic AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG, and spectral AMGe. These results are summarized in a recent survey article entitled “Algebraic Multigrid Methods” in Acta Numerica (Vol 26). Finally we will discuss our ongoing investigation on relationship and cross-application between algebraic multigrid techniques and deep neural networks.
時(shí)間:2017年6月15日下午4:00開(kāi)始
地點(diǎn):南山一階
歡迎感興趣的同學(xué)和老師參加!
湘潭大學(xué)教務(wù)處
湘潭大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院
科學(xué)工程計(jì)算與數(shù)值仿真湖南省重點(diǎn)實(shí)驗(yàn)室